The mode of ATP-dependent microtubule-kinesin sliding in the auxotonic condition.
نویسندگان
چکیده
Kinesin is a motor protein that converts chemical energy derived from ATP hydrolysis into mechanical work to transport cellular components along microtubules. We studied the properties of ATP-dependent microtubule-kinesin sliding with two different in vitro assay systems. In one assay system, a kinesin-coated glass microneedle (elastic coefficient, 1-2.5 pN microns -1) was made to slide along an axoneme. Using this system, we obtained the relationship between the force (= load) on the microneedle and the velocity of microneedle-kinesin sliding in the auxotonic condition, in which the load on the microtubule-kinesin contacts increased as sliding progressed. The force-velocity curve was upwardly convex (maximum velocity Vmax, 0.58 +/- 0.15 microns s-1; maximum isometric force P0, 5.0 +/- 1.6 pN) and was similar to that of in vitro actin-myosin sliding in the auxotonic condition, suggesting that the two motor protein systems have fundamental kinetic properties in common. In the other assay system, an axoneme attached to a glass microneedle (elastic coefficient, 4-5 pN microns -1) was made to slide on a kinesin-coated glass surface (Vmax, 0.68 +/- 0.17 microns s-1; P0, 46.1 +/- 18.6 pN). The change in shape of the axoneme indicated an enormous flexibility of randomly oriented kinesin molecules.
منابع مشابه
Purified kinesin promotes vesicle motility and induces active sliding between microtubules in vitro.
We examined the ability of kinesin to support the movement of adrenal medullary chromaffin granules on microtubules in a defined in vitro system. We found that kinesin and ATP are all that is required to support efficient (33% vesicle motility) and rapid (0.4-0.6 micron/s) translocation of secretory granule membranes on microtubules in the presence of a low-salt motility buffer. Kinesin also in...
متن کاملUse of Stopped-Flow Fluorescence and Labeled Nucleotides to Analyze the ATP Turnover Cycle of Kinesins
The kinesin superfamily of microtubule associated motor proteins share a characteristic motor domain which both hydrolyses ATP and binds microtubules. Kinesins display differences across the superfamily both in ATP turnover and in microtubule interaction. These differences tailor specific kinesins to various functions such as cargo transport, microtubule sliding, microtubule depolymerization an...
متن کاملThe force-velocity relationship for microtubule sliding in demembranated sperm flagella of the sea urchin.
We studied the relationship between the force and velocity of microtubule sliding in demembranated sperm flagella of the sea urchin, Hemicentrotus pulcherrimus, under auxotonic conditions following a quick release of the tension between sliding microtubules. The shape of the force-velocity curve was independent of the concentration of Mg-ATP over the range of 3.7 to 350 microM and appeared eith...
متن کاملPressure-induced changes in the structure and function of the kinesin-microtubule complex.
Kinesin-1 is an ATP-driven molecular motor that "walks" along a microtubule by working two heads in a "hand-over-hand" fashion. The stepping motion is well-coordinated by intermolecular interactions between the kinesin head and microtubule, and is sensitively changed by applied forces. We demonstrate that hydrostatic pressure works as an inhibitory action on kinesin motility. We developed a hig...
متن کاملFractional order Adaptive Terminal Sliding Mode Controller Design for MPPT in a Solar Cell under Normal and Partial Shading Condition
In this paper, by combining fractional calculus and sliding mode control theory, a new fractional order adaptive terminal sliding mode controller is proposed for the maximum power point tracking in a solar cell. To find the maximum power point, the incremental conductance method has been used. First, a fractional order terminal sliding mode controller is designed in which the control law depend...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 198 Pt 8 شماره
صفحات -
تاریخ انتشار 1995